This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

SOME NEW SULFUR AND SELENIUM SUBSTITUTED BENZOQUINONE-CYCLOPENTADIENE DIELS-ALDER ADDUCTS. PART II. MONOSUBSTITUTED ADDUCTS

B. Wladislaw^a; L. Marzorati^a; C. Di Vitta^a; I. De Arruda Campos^a ^a Instituto de Química, Uniuersidade de São Paulo, São Paulo, Brazil

To cite this Article Wladislaw, B. , Marzorati, L. , Vitta, C. Di and Campos, I. De Arruda(1990) 'SOME NEW SULFUR AND SELENIUM SUBSTITUTED BENZOQUINONE-CYCLOPENTADIENE DIELS-ALDER ADDUCTS. PART II. MONOSUBSTITUTED ADDUCTS', Phosphorus, Sulfur, and Silicon and the Related Elements, 47: 1, 153 — 156

To link to this Article: DOI: 10.1080/10426509008046855 URL: http://dx.doi.org/10.1080/10426509008046855

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SOME NEW SULFUR AND SELENIUM SUBSTITUTED BENZOQUINONE-CYCLOPENTADIENE DIELS-ALDER ADDUCTS. PART II. MONOSUBSTITUTED ADDUCTS

B. WLADISLAW,† L. MARZORATI, C. DI VITTA and I. P. de ARRUDA CAMPOS

Instituto de Química, Universidade de São Paulo, Caixa Postal 20.780, São Paulo, Brazil

(Received May 13, 1989; in final form May 18, 1989)

Some new sulfur and selenium monosubstituted benzoquinone-cyclopentadiene Diels-Alder adducts having the *endo* configuration have been synthesized and characterized.

Key words: Chlorobenzoquinone-cyclopentadiene adduct; sulfur; selenium; endo configuration; ¹³C NMR spectra.

INTRODUCTION

We have been interested, for the purpose of photocyclization studies, ^{1,2} to obtain monosulfenylated and selenylated benzoquinones-cyclopentadiene adducts having an *endo* configuration. Only two representatives of this serie of compounds have been reported in the literature: 4-mercaptotolyl³ and 1-phenyl, 5-mercaptotetrazol⁴ substituted derivatives. The first compound was obtained by treating benzoquinone with a thiol, prior to Diels-Alder reaction with cyclopentadiene. The second one was prepared by the reaction of the epoxide of the unsubstituted benzoquinone-cyclopentadiene adduct with thiol.

In the preliminary studies⁵ we verified that both methods failed when aliphatic thiols were employed. Thus, the addition of ethanethiol to benzoquinone lead to formation of the tetraethylthio-substituted benzoquinone and the reaction of ethanethiol with the epoxide of the benzoquinone-cyclopentadiene adduct afforded the corresponding aromatized ethylthio-substituted adduct.

In view of these observations, the addition-elimination method, which has been found to be successful in the case of the disubstituted benzoquinone-cyclopentadiene adducts seemed to merit investigation.

RESULTS

Scheme 1 illustrates the reaction between the chlorobenzoquinone-cyclopentadiene adduct (1) and some sulfur and selenium nucleophiles to give the corresponding monosubstituted adducts (2a-h).

[†] To whom correspondence should be addressed.

Y = SMe (a); SEt (b);
$$SCH_2\phi$$
 (c); $S\phi$ (d); $SC_6H_4^{-0CH}_3(p)$ (e); $SC_6H_4^{-NO}_2(p)$ (f); $SO_2\phi$ (g); $Se\phi$ (h)

SCHEME 1

Table I shows the yields, physical constants and microanalytical results of the compounds (2a-h) and Table II the ¹H NMR and IR data of the same compounds.

The configuration of these compounds was determined by analysis of the ¹³C NMR spectra, which showed that, similar to the corresponding disubstituted adducts, the double-bond carbons (C-6, 7) chemical shifts are in the 135–136 ppm region and the methylene bridge carbon (C-9) in the ~49 ppm region, which support an *endo* configuration.

EXPERIMENTAL

All melting points are uncorrected. The IR spectra were run on a Perkin Elmer 283 or 180 spectrometer (Grating) in KBr. ¹H and ¹³C NMR spectra were recorded, on a Varian T-60 or on a Bruker AC-80 spectrometer, respectively. The carbon and hydrogen analyses were carried out on a Perkin Elmer elemental analyser 240-B. Chlorobenzoquinone⁶ and the corresponding adduct⁷ with cyclopentadiene (1) were prepared according to literature procedures.

TABLE I

Yields, physical data and microanalyses of monosubstituted benzoquinone-cyclopentadiene adducts

		Yield	m.p.	Molecular	Calcd	/Found	(%)
Compounds	Υ	(%)	(°C)	formula	С	Н	Ň
2a	SCH ₃	78	153-4	$C_{12}H_{12}O_2S$	65.43	5.49	_
	·			(220.29)	65.34	5.48	
2b	SC ₂ H ₅	74	87-8	$C_{13}H_{14}O_{2}S$	66.64	6.02	_
				(234.27)	66.74	6.22	_
2c	SCH ₂ C ₆ H ₅	72	138-40	$C_{18}H_{16}O_{2}S$	72.94	5.45	_
	•			(264.33)	72.72	5.47	_
2d	SC ₆ H ₅	68	128-30	$C_{17}H_{14}O_2S$	72.31	5.00	_
	O S			(282.36)	72.47	5.05	_
2e	$SC_6H_4OCH_3(p)$	70	109-10	$C_{18}H_{16}O_3S$	69.20	5.17	_
	0 4,			(312.39)	69.47	5.48	_
2f	$SC_6H_4NO_2(p)$	43	134-6	C ₁₇ H ₁₃ NO ₄ S	62.37	4.01	4.2
	0 4 247			(327.36)	62.10	4.28	4.1
2g	$SO_2C_6H_5$	66	118-20	$C_{17}H_{14}O_4S$	64.95	4.50	_
•	2 0 3			(314.36)	65.22	4.44	_
2h	SeC ₆ H ₅	47	120-22	$C_{17}H_{14}O_{2}Se$	62.01	4.29	
				(329.26)	62.14	4.16	_

TABLE II

¹H NMR and IR data for monosubstituted benzoquinone-cyclopentadiene adducts

3 4	*,			¹ Η NMR (δ in ppm, 10% (v/v) in CDCl ₃))% (v/v) in CD	ACI3)	
0	¥	4a, 8a	5,8	6,7	6	3	Y
2a" 2b"	SCH ₃ SC ₂ H ₅	3.24(m, 2H) 3.22(m, 2H)	3.53(m, 2H) 3.52(m, 2H)	6.00(m, 2H) 6.01(m, 2H)	1.53(m, 2H) 1.49(m, 2H)	6.16(s, 1H) 6.17(s, 1H)	2.23(s, 3H) 1.36(t, J = 6.8 Hz, 3H)
26.	SCH ₂ C ₆ H ₅	3.20(m, 2H)	3.44(m, 2H)	5.99(m, 2H)	1.45(m, 2H)	6.32(s, 1H)	2.09(q, J = 0.8 Hz, 2H) 3.85(bs, 2H)
Şe° 7€°	SC ₆ H ₅ SC ₆ H ₄ OCH ₃ (p)	3.18(m, 2H) 3.21(m, 2H)	3.53(m, 2H) 3.48(m, 2H)	6.00(m, 2H) 6.07(m, 2H)	1.45(m, 2H) 1.49(m, 2H)	5.71(s, 1H) 5.74(s, 1H)	7.22(ss, 5H) 7.02(s, 5H) 3.82(s, 3H) 6.93(d. J = 8.8 Hz. 2H)
ង	SC ₆ H ₄ NO ₂ (p)	3.28(m, 2H)	3.56(m, 2H)	6.08(m, 2H)	1.56(m, 2H)	5.80(s, 1H)	7.30(d, J = 8.8 Hz, 2H) 7.60(d, J = 9.0 Hz, 2H)
28 °	SO ₂ C ₆ H ₅	3.28(m, 2H)	3.49(m, 2H)	5.77(dd, J = 6.0; 2.1 Hz, 1H)	1.50(m, 2H)	7.30(s, 1H)	6.24(0, J = 9.0 Hz, 2H) 7.62(m, 3H) 7.09(44, 1 = 6.9, 2.5 Hz, 2H)
2h ^b	SeC ₆ H ₅	3.22(m, 2H)	3.48(m, 2H)	6.08(bs, 2H)	1.51(m, 2H)	6.08(bs, 1H)	`

^a D_{co} (cm⁻¹): 1670, 1640. ^b D_{co} (cm⁻¹): 1670.

Mono substituted benzoquinone-cyclopentadiene adducts (2a-h). General Procedure.

To a stirred solution of chlorobenzoquinone-cyclopentadiene adduct (1) (4.8 mmol) in 5 ml of dry methanol was added, dropwise, a solution of sodium thiolate, in dry methanol (5 ml) prepared from sodium methoxide (4.7 mmol) and the corresponding thiol (5.1 mmol). When the addition was completed, the solid product was isolated by filtration, washed at least 3 times with n-pentane (5 ml) and recrystalized from methanol. p-Nitrophenylthiolate and phenylselenolate were prepared as in the previous paper. For mps, yields, ¹H NMR and IR data of compounds 2a-h see Tables I, and II. ¹³C-NMR (δ ppm; 40% v/v, CDCl₃): 2a 48.83(C-9); 134.68, 135.67 (C-7). 2c 49.08(C-9); 134.55, 135.52(C-6,7). 2d 48.76(C-9); 134.38, 135.12(C-6,7). 2e 48.87(C-9); 134.70, 135.67(C-6,7). 2f 48.98(C-9); 134.80, 135.86(C-6,7). 2g 49.01(C-9), 134.21, 135.47(C-6,7). 2h 48.92(C-9); 134.83, 135.71(C-6,7).

ACKNOWLEDGEMENT

We are grateful to "Fundação de Amparo à Pesquisa do Estado de São Paulo" and "Conselho Nacional de Desenvolvimento Científico e Tecnológico" for grants and financial support.

REFERENCES

- 1. Part I: B. Wladislaw, L. Marzorati and C. Di Vitta, Phosphorus and Sulfur, 25, 147 (1985).
- 2. B. Wladislaw, L. Marzorati and I. P. A. Campos, Forthcoming publication.
- H. S. Wilgus III, F. Frauenglass, P. P. Chiesa, G. H. Nawn, F. I. Evans and J. W. Gates Jr., Can. J. Chem., 44, 603 (1966).
- 4. D. F. O'Brien and J. W. Gates Jr., J. Org. Chem., 30, 2563 (1965).
- 5. B. Wladislaw, L. Marzorati, C. Di Vitta, unpublished data.
- 6. H. W. Underwood Jr. and W. L. Walsh, J. Am. Chem. Soc., 58, 646 (1936).
- 7. H. Rakoff and B. Miles, J. Org. Chem., 26, 2581 (1961).